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Abstract
A new approach in the singular perturbations theory is proposed. Let A be
a self-adjoint unbounded operator corresponding to the free Hamiltonian of
some physical system in the state space H0 and H− � H0 � H+ be the rigged
Hilbert space associated with A, dom A = H+ in the graph norm. Then a
singular perturbation of A is defined as the unique self-adjoint operator Ă

in H0 associated with a new rigged Hilbert space H̆− � H0 � H̆+, where
H̆+ = dom Ă is closed in H+ and densely embedded in H0 (such a kind of
subspaces usually appears as a null space for a singular perturbant). We find the
connections between A and Ă and investigate the properties of Ă. In particular,
we show that operators A and Ă are different on an infinite-dimensional
subspace even in the case of a rank-1 singular perturbation (codim H̆+ = 1).

PACS numbers: 02.30.Tb, 03.65.Db
Mathematics Subject Classification: 47A10, 47A55

1. Introduction

Let H0 be a Hilbert space with the inner product (·, ·)0 and the norm ‖·‖0 (the state space of
the free physical system). And let A = A∗ be a positive unbounded self-adjoint operator in H0

corresponding to the free Hamiltonian. A trivial fact is that dom A ≡ D(A) constitutes
a Hilbert space H+ in the graph norm. This space is densely embedded in H0; write
H0 � H+. Let H− be defined as the conjugate space to H+ with respect to H0. Then
the triplet H− � H0 � H+ is called the rigged (or equipped) Hilbert space. This triplet is
uniquely associated with the operator A (for details see [6, 7, 20]).

Let a linear domain D ⊂ H+ be dense in H0. One can think that D = Ker T, i.e., D is a
null space of a singular perturbant T : H+ → H−. According to the recognized conception
in the singular perturbations theory [1–5, 8–23], the perturbed operator corresponding to a
formal sum A +̃ T is defined as one of the self-adjoint extensions of the symmetric operator
Ȧ := A|D.
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In this paper, we propose a new approach for the construction of the singularly perturbed
operator. Starting with an orthogonal decomposed D(A) = H+ = M+ ⊕ N+, such that
M+ is dense in H0 (one should identify M+ with the above domain D ), we introduce the
new rigged Hilbert chain H̆− � H0 � H̆+ ≡ M+. Then we define the perturbed operator,
which is denoted by Ă, as one uniquely associated with the latter triplet. Thus, we extend
the usual class of singularly perturbed operators. Besides all self-adjoint extensions of the
symmetric operator Ȧ := A|D ≡ A | M+ we add to this class the operator Ă with the domain
D(Ă) = M+. From our point of view, the choice Ă more adequately reflects the physical idea
about a hard core of a singular interaction.

The arising mathematical problems are to study the properties of Ă and establish the
connections between A and Ă.

2. Some background on rigged Hilbert spaces

Here we recall some facts about rigging spaces and A-scales of Hilbert spaces (for more details
see [6, 7]).

By definition a triplet of Hilbert spaces

H− � H0 � H+, (2.1)

is called the rigged (or equipped) Hilbert space if the following conditions are fulfilled: (a) both
above embedding are continuous and dense (a symbol � just denotes the dense embedding),
(b) the norms in H−,H0 and H− are subjected to the inequalities

‖·‖− � ‖·‖0 � ‖ · ‖+,

(c) spaces H− and H+ are mutually conjugated with respect to H0.
The latter condition means that each vector ϕ ∈ H+ generates in the inner product

in H0 a linear functional lϕ(f ) := (f, ϕ)0, f ∈ H0, which has a continuous extension
onto the whole space H−. Thus, the positive norm ‖ϕ‖+ may be calculated as follows,
‖ϕ‖+ = sup‖f ‖−=1 |(f, ϕ)0|. By the Riesz theorem lϕ(f ) = (f, ϕ∗)− with a some ϕ∗ ∈ H−.
Therefore ‖ϕ‖+ = ‖ϕ∗‖− and the mapping

D−,+ : H+ � ϕ → ϕ∗ ∈ H−

is isometric (in fact unitary). On the other hand H− coincides with the completion of H0 with
respect to the negative norm ‖f ‖− := sup‖ϕ‖+=1 |(ϕ, f )0|, ϕ ∈ H+. In turn, given H0 and
H− an element ϕ from H0 belongs to H+ iff the linear functional lϕ(f ) = (f, ϕ)0, f ∈ H0 is
continuous on H−. Thus there exists the dual inner product between H+ and H−, which we
denote by 〈ω, ϕ〉−,+ = 〈ϕ, ω〉+,−, ω ∈ H−, ϕ ∈ H+.

The operators

D−,+ : H+ → H− and I+,− = D−1
−,+ : H− → H+

are called the canonical unitary isomorphisms between H− and H+. They satisfy the relations:

(f, ϕ)0 = (f,D−,+ϕ)−, 〈ω, ϕ〉−,+ = (I+,−ω, ϕ)+,

f ∈ H0, ω ∈ H−, ϕ ∈ H+,

and

‖ϕ‖+ = ‖D−,+ϕ‖− = ‖ϕ∗‖−, ‖ω‖− = ‖I+,−ω‖+,

ϕ ∈ H+, ω = ϕ∗ ∈ H−,

where ϕ∗ was defined above.
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There exists the well-known connection between rigged Hilbert spaces of the type (2.1)
and self-adjoint operators A in H0. This connection is fixed by D−,+ and the condition
D(A) = H+. Indeed, let us consider the operator

LA := D−,+|H++, where H++ ≡ D(LA) := {ϕ ∈ H+|D−,+ϕ ∈ H0}.
Obviously LA is symmetric in H0 since for all ϕ,ψ ∈ D(LA),

(LAϕ,ψ)0 = (D−,+ϕ,ψ)0 = 〈ϕ∗, ψ〉−,+ = (ϕ, ψ)+

= 〈ϕ,ψ∗〉+,− = (ϕ,D−,+ψ)0 = (ϕ, LAψ)0.

Therefore, LA is self-adjoint in H0 because by the construction its range runs through the
whole H0. By the construction LA is positive. We define A := L

1/2
A . Clearly D(A) = H+ due

to (LAϕ,ψ)0 = (
L

1/2
A ϕ,L

1/2
A ψ

)
0 = (ϕ, ψ)+. Evidently also that A � 1 due to ‖ · ‖+ � ‖ · ‖.

Vice versa, let A = A∗ � 1 be a self-adjoint unbounded operator with domain D(A) in a
Hilbert space H0. Using A one can easily construct the rigged Hilbert space H− � H0 � H+.
We recall these constructions.

Define the space H+ as the domain D(A) endowed by the inner product (ϕ, ψ)+ :=
(Aϕ,Aψ)0, ϕ, ψ ∈ D(A). Then starting with the pre-rigged pair H0 � H+ we extend it to
the rigged Hilbert space (2.1) by the standard way. Thus, the following theorem is true.

Theorem 2.1. Each rigged Hilbert space (2.1) is uniquely associated with the self-adjoint in
H0 operator A = A∗ � 1 such that D(A) = H+ in the norm ‖ϕ‖+ = ‖Aϕ‖0, ϕ ∈ D(A).

We remark that the above connection between rigged Hilbert spaces and self-adjoint
operators admits the extension to the case of an arbitrary self-adjoint but not necessary positive
operators A. To reach this, one has to put ‖ϕ‖+ = ‖(A + i)ϕ‖0, ϕ ∈ D(A).

Now we recall the construction of the infinite chain of Hilbert spaces {Hα ≡ Hα(A)}α∈R,
which extends the above rigged Hilbert space and is called the A-scale.

For each α > 0 we define the Hilbert space Hα ≡ Hα(A) which coincides, as a set,
with the domain D(Aα/2) and which is the complete space with respect to the norm ‖·‖α

corresponding to the inner product

(ϕ, ψ)α := (Aα/2ϕ,Aα/2ψ)0 ϕ,ψ ∈ D(Aα/2).

Then the space H−α appears as the completion of H0 in the negative norm

‖f ‖−α := ‖A−α/2f ‖0, f ∈ H0.

It is easy to see that each triplet

H−α � H0 � Hα, α > 0 (2.2)

organizes the rigged Hilbert space associated with Aα/2. In particular, according to the previous
notations, H+ = H2(A) and H− = H−2(A).

Let D−α,α : Hα → H−α denote the operator of canonical unitary isomorphism for
the rigged triplet (2.2). This follows that D−α,α = (Aα/2)cl(Aα/2) ≡ D−α,0D0,α , where cl
stands for a closure of the mapping Aα/2 ≡ D0,α : H0 → H−α/2. For α = 2, we have:
D0,2 ≡ A : H2 → H0 and D−2,0 ≡ Acl : H0 → H−2.

3. The rigged Hilbert spaces approach

Let a singular perturbation of the starting Hamiltonian in H0 be given by an unclosable
quadratic form γ with a domain Q(γ ) ⊂ dom A. Assume that γ belongs to the so-called
H−2-class [3, 20, 22]. This means, in particular, that γ is zero almost everywhere in H0 but
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it is closable in H+ = D(A). Therefore, there exists the operator T ≡ Tγ : H+ → H−, which
is associated with γ , such that the subspace M+ := Ker Tγ is dense in H0 and the subspace
N− := (Ran T )cl,− has a zero intersection with H0, where cl,- stands for the closure in H−.

For the construction of the perturbed operator corresponding to the formal sum A +̃ T ,
usually one introduces the symmetric restriction

Ȧ := A | M+

and considers the family of all self-adjoint extensions Aα of Ȧ (α stands for a parameter
of extensions) in the role of singular perturbations of A caused by γ . For example, the
one-dimensional Schrödinger operator −�λ,α with the δy-potential is fixed by the boundary
condition of the type: ϕ′(y + 0) − ϕ′(y − 0) = αϕ(y), y ∈ R (see e.g. [1]).

Here we propose another method. We interpret a singular perturbation as an interaction
with an absolutely hard core (or an impenetrable screen) situated in a small physical volume
of zero Lebesgue measure. So, inside of this volume, which corresponds to the subspace
N+ := H+ � M+, the action of the perturbed Hamiltonian is absolutely unknown, and we
propose to cut off this subspace from Hamiltonian’s domain. To the point, on the strength
of singularity, the values of T on vectors ϕ ∈ dom T ∩ N+ have infinite norms in the sense
of the space H0. Of course, it is natural to preserve the Hamiltonian without any changes
on the domain Ker T. However, in general it is impossible if we assume that in the physical
space an impenetrable object (a hard core) appears, even if it is situated in a zero measure
volume. In fact, the corresponding perturbed dynamics should occur outside of such volume
and therefore the operator’s domain of the Hamiltonian is subjected to a certain contraction,
which is fulfilled by the projection onto M+ (see formula (4.11)). Thus, we may take the
subspace Ker T as the domain of a new self-adjoint operator Ă and interpret it as a perturbation
of A. We will show that such operator is uniquely defined by the condition D(Ă) = Ker T.
We propose to consider the operator Ă as an additional version in the definition of singular
perturbations for A.

Apparently, in the same way starting with operators Aα one can introduce a family of
operators Ăα with D(Ăα) ⊆ Ker T, which may be considered in a role of singular perturbations
for A too.

Here we remark the following important feature of our constructions. Always the operators
Ă, A differ on the infinite-dimensional subspace (see proposition 5.1); however their square
powers Ă2, A2 coincide on the dense subset in H0.

We formulate our main result as follows:

Theorem 3.1. Let A be a positive self-adjoint operator with a domain D(A) in a Hilbert
space H0. Denote D(A) = H+ in the graph norm. Let a singular perturbant of A be given by
some operator T : H+ → H− such that the subspace M+ := Ker T is dense in H0 (for a dense
continuous embedding we use notation M+ � H0 ). Consider the new rigged Hilbert space

H̆− � H0 � H̆+, where H̆+ ≡ M+, (3.1)

and H̆− is the conjugate space to M+. Assume that a codimension of M+ in H+ is finite, i.e.,

dimN+ < ∞, where N+ := H+ � M+. (3.2)

Then the self-adjoint operator Ă such that D(Ă) = M+ is uniquely associated with the triplet
(3.1). Moreover, this operator admits the following explicit description in terms of the mapping

L : PM+ϕ → A2ϕ, ϕ ∈ D(A2),

where PM+ stands for the orthogonal projection onto M+ in H+. Namely

Ă = L1/2.
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Remark. Theorem 3.1 is true also if dimN+ = ∞ but the following condition holds:

(N−)cl,−− ∩ H− = N−, (3.3)

where N− := D−,+N+, and cl, −− stands for a closure in H−− ≡ H−4(A) (see the previous
section for notations).

To the end of this section we discuss the question, when a subspace M+ from H+ is dense
in H0?

Let a rigged Hilbert space H− � H0 � H+ be given. Assume that the positive space
H+ is decomposed into an orthogonal sum H+ = M+ ⊕ N+. There exists a simple criterion
ensuring the dense embedding H0 � M+.

Theorem 3.2 [2]. Let H+ = M+ ⊕ N+. A closed in H+ subspace M+ is dense in H0 iff the
subspace N− := D−,+N+ has a zero intersection with H0,

H0 � M+ ⇔ N− ∩ H0 = {0}. (3.4)

Equivalently,

H0 � M+ ⇔ N0 ∩ H+ = {0}, where N0 := D0,+N+. (3.5)

Proof. Let us prove (3.4). Let N− ∩ H0 = {0} and assume that there exists a vector
0 �= ψ ∈ H0, ψ ⊥ M+. Since M+ is a subspace of H+ and due to ψ ∈ H− we have

0 = (ψ,M+)0 = 〈ψ,M+〉−,+ = (I+,−ψ,M+)+.

Therefore I+,−ψ ∈ N+. This means that ψ ∈ N−, that is a contradiction to the starting
assumption. Vice versa, if the subspace M+ is dense in H0 then assumption that there exists
a vector 0 �= ω ∈ N− ∩ H0 leads to contradiction too. Indeed, since N− = D−,+N+ we have,

〈ω,M+〉−,+ = (ω,M+)0 = (I+,−ω,M+)+ = 0

that is a contradiction with M+ � H0 since 0 �= ω ∈ H0. �

Corollary 3.3. Under condition (3.3) the set M̃+ := Ker T ∩ D(A2) is dense in H0, and

Ă2|M̃+ = A2|M̃+.

4. The construction of the operator Ă

Let H− � H0 � H+ be the rigged Hilbert space associated with a self-adjoint in H0 operator
A � 1. So, H+ = H2(A) = D(A) in the norm ‖·‖+=‖ A ·‖0, and A2 coincides with the
restriction of D−,+ : H+ → H− onto H++ ≡ H4(A),

A2 = D−,+|H++.

Assume the positive space H+ is decomposed into an orthogonal sum H+ = M+ ⊕N+ in such
a way that the subspace M+ is dense in H0,H0 � M+. Consider a new rigged Hilbert space

H̆− � H0 � H̆+, where H̆+ ≡ M+. (4.1)

Here we will describe the construction of the self-adjoint operator Ă associated with the
chain (4.1) in such a way that the domain D(Ă) = H̆+.

We recall that the negative space H̆− is defined as a completion of H0 with respect to the
new negative norm:

‖f ‖̆− := sup‖ϕ‖+=1|(f, ϕ)0|, ϕ ∈ M+. (4.2)
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It is clear that for any fixed f ∈ H0

‖f ‖̆− � ‖f ‖−, (4.3)

where we recall that

‖f ‖− := sup‖ϕ‖+=1|(f, ϕ)0|, ϕ ∈ H+.

Thus, the space H0 is densely embedded both in H− and H̆−. Looking at (4.3) one can
naively think that H− is embedded in H̆− as a subset; however this is not true.

Proposition 4.1. A closure of the identical mapping (this mapping is bounded due to (4.3))

J : H− � f → f ∈ H̆−, f ∈ H0,

has a non-trivial zero-subset:

Ker J cl = N−, where N− = I−,+N+, (cl = closure).

Proof. Let a sequence fn, fn ∈ H0, converges in H− to some element η− ∈ N−. Then by
(4.3) this sequence is convergent in H̆− too. Moreover

(fn, ϕ)0 = 〈fn, ϕ〉−,+ → 〈η−, ϕ〉−,+ = 0, ϕ ∈ M+ ≡ H̆+,

since N− ⊥ M+. This means that fn → 0 in H̆−. Therefore η− ∈ Ker J cl. �

In fact, the restriction of J cl onto subspace M− := D−,+M+ is a unitary operator. It
follows from

Proposition 4.2. For each f ∈ H0,

‖f ‖̆− = ‖PM−f ‖−,

where PM− stands for the orthogonal projection onto M− in H−.

Proof. If ϕ ∈ M+, then we have

(f, ϕ)0 = 〈f, ϕ〉−,+ = 〈PM−f, ϕ〉−,+,

where we used M− ⊥ N+ and (4.2). �

Thus, the space H− does not belong to H̆− as a part,

H̆− � H−, (4.4)

in spite of that H̆+ ≡ M+ is a proper part of H+ and inequality (4.3) holds.
By proposition 4.2 the spaces H̆− and M− are unitary equivalent. We also remark that

PM−f �= 0 for any f ∈ H0. (4.5)

Indeed, PM−f = 0 means that f ∈ N−; however N− ∩ H0 = {0} due to H0 � M+ (see
theorem 3.2).

Let D̆−,+ : H̆+ → H̆− denote the canonical unitary isomorphism in the rigged Hilbert
space (4.1).

Proposition 4.3. The subspace M̃+ := M+ ∩ H++ is closed in H++. Moreover, the subspace
M̃+ is dense in H0,

H0 � M̃+, (4.6)

if condition (3.3) is fulfilled. In particular, M̃+ is dense in H0 if the dimension of N+ is finite.
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Proof. Let a sequence ϕn ∈ M̃+ be convergent in H++: ϕn → ϕ ∈ H++. Then it is convergent
in H+ too, due to ‖·‖+ � ‖·‖++. Therefore ϕ ∈ M+ since M+ is closed in H+. Thus, M̃+ is
closed in H++ too.

Further, using the definition of M̃+ in the form

M̃+ = {ϕ ∈ H++|(ϕ, ψ)+ = 0, ψ ∈ N+},
by properties of the A -scale we have,

(ϕ, ψ)+ = 〈ϕ, ω〉+,− = 〈ϕ, ω〉++,−−, where ω = D−,+ψ, ψ ∈ N+.

This implies that

Ñ− = (N−)cl,−−, (4.7)

where

Ñ− := {ω ∈ H−−|〈ϕ, ω〉++,−− = 0, ϕ ∈ M̃+}.
Further, under condition (3.3), Ñ− ∩ H0 = {0}. Therefore H0 � M̃+ due to theorem 3.2.
Finally we note that condition (3.3) is automatically fulfilled, if dim N0 = dim N+ < ∞. �

Proposition 4.4. The mappings D̆−,+,D−,+ coincide on the subspace M̃+ = M+ ∩ H++ and
moreover, they map M̃+ into H0:

D̆−,+ϕ = D−,+ϕ ∈ H0, ϕ ∈ M̃+. (4.8)

Proof. We recall thatH++ ≡ H4(A) = D(A2). Therefore the vector f := D−,+ϕ = A2ϕ ∈ H0

for each ϕ ∈ H++.

Consider for a fixed ϕ ∈ M̃+ two functionals:

lϕ(ψ) := 〈D−,+ϕ,ψ〉−,+, ψ ∈ H+

and

l̆ϕ(ψ) := 〈D̆−,+ϕ,ψ 〉̆−,+, ψ ∈ M+.

Since f = D−,+ϕ ∈ H0 the functional lϕ(ψ) is continuous on H0, and lϕ(ψ) = (f, ψ)0 =
(ϕ, ψ)+ for all ψ ∈ M+.

The functional l̆ϕ(ψ) is continuous on H0 too, since M+ = H̆+ and l̆ϕ(ψ) = (ϕ, ψ)+ =
〈ϕ,ψ〉H++,H0 , |l̆ϕ(ψ)| � c ‖ψ‖0, where c =‖ϕ‖++. Therefore l̆ϕ(ψ) = (f̆ , ψ)0 with some
f̆ ∈ H0.

We assert that f = f̆ . Indeed, by the construction (f, ψ)0 = (ϕ, ψ)+ = (f̆ , ψ)0 for all
ψ ∈ M+. This implies that the vectors f and f̆ coincide, since the subspace M+ is dense in
H0. This completes the proof. �

Proposition 4.5. Under condition (3.3) (or (3.2)) the subspace M̃+ is dense in M+.

Proof. If φ ∈ M+ and φ ⊥ M̃+, then D−,+φ ⊥ N− and D−,+φ ∈ Ñ−. Therefore φ ≡ 0
since Ñ− = N− due to (3.3). In more details, let M+ = M̃+ ⊕ M̃⊥

+ and φ ∈ M̃⊥
+ . Then

ω := D−,+φ ∈ M̃⊥
−, where M̃⊥

− = M̃− � M̃⊥
−. Therefore we have

〈ω,M̃+〉−,+ = 0 = 〈ω,M̃+〉−−,++ ⇒ ω ∈ Ñ− = N−.

But this is possible only if φ = 0 since φ ∈ M+ and D−,+φ ⊥ N−. �

Let us consider the operator

L̇ := D−,+|M̃+ = D̆−,+|M̃+ = A2|M̃+. (4.9)
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Due to proposition 4.3 it is the closed densely defined symmetric operator in H0. We assert
that the range of L̇ is dense in H̆−. Indeed, the range of L̇ coincides with the subspace
M̃− = A2M̃+ = A2(M+ ∩H++) = M− ∩H0, which is dense in H̆− due to D̆−,+ : H̆+ → H̆−
being the unitary operator.

Proposition 4.6. The Friedrichs extension of the symmetric operator L̇ can be defined as
follows

L∞ ≡ L := D̆−,+|D(L), with D(L) := {ϕ ∈ M+|D̆−,+ϕ ∈ H0}. (4.10)

Proof. By proposition 4.5, the space H̆+ coincides with the completion of M̃+ in the inner
product (ϕ, ψ)H̆+

:= (L̇ϕ, ψ)0 = (Aϕ,Aψ)0 = (ϕ, ψ)+, ϕ, ψ ∈ M̃+. Therefore L is an
extension of L̇. Obviously the operator L is symmetric and its range is the whole space H0.
This means that L is self-adjoint. By construction it is the Friedrichs extension of L̇ since
M̃+ � M+. �

Now we give a more explicit description of the operator L.

Theorem 4.7. The operator L defined by (4.10) admits the following representation:

D(L) = PM+H++, LPM+ϕ = A2ϕ, ϕ ∈ D(A2) = H++, (4.11)

where PM+ stands for the orthogonal projection onto M+ in H+.

Proof. Let us show that the mapping

L : PM+ϕ → A2ϕ, ϕ ∈ H++

is a symmetric operator in H0. Indeed, for each ϕ,ψ ∈ H++ we have

(LPM+ϕ, PM+ψ)0 = (A2ϕ, PM+ψ)0 = 〈D−,+ϕ, PM+ψ〉−,+

= 〈PM−D−,+ϕ, PM+ψ〉−,+ = 〈D−,+PM+ϕ, PM+ψ〉−,+ = 〈PM+ϕ,D−,+PM+ψ〉+,−

= 〈PM+ϕ,D−,+ψ〉+,− = 〈PM+ϕ,A2ψ〉+,− = (PM+ϕ,LPM+ψ)0.

This implies that L is self-adjoint since its range R(L) = R(A2) = H0. Further, obviously
PM+M̃+ = M̃+. It follows that M̃+ ⊂ D(L) and LM̃+ = L̇M̃+ = A2M̃+ (see (4.10)).
Therefore, the operator L defined by (4.11) coincides with the operator L in (4.10) since M̃+

is dense in M+ (see proposition 4.5). �

Finally we introduce the operator

Ă := L1/2.

We assert that the domain of Ă exactly coincides with the subspace M+, i.e.,

D(Ă) = M+. (4.12)

Proposition 4.8. (4.12) is true since the completion of the set D((Ă)2) = D(L) in the norm
‖·‖+ := ‖L1/2 · ‖0 coincides with M+.

Proof. Indeed, since M̃+ is dense in M+ we need to recall only that (Lϕ,ψ)0 =
(ϕ, ψ)+, ϕ, ψ ∈ M̃+. Therefore, by the definition of L, we have (Lϕ,ψ)0 =
(L1/2ϕ,L1/2ψ)0 = (A2ϕ,ψ)0 = (ϕ, ψ)+ = ((Ă)2ϕ,ψ)0 for ϕ,ψ ∈ M̃+. Thus
M+ = H1(L) and therefore M+ = H2(Ă) = D(Ă). �

Thus, we proved theorem 3.1 completely.
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5. Discussion and example

From (4.11) and proposition 4.5 it follows that the operators Ă2 and A2 coincide on the
subspace M̃+ = D(Ă2) ∩D(A2) which is dense in H0. We note that D(Ă2) ⊂ D(A2) and the
inclusion D(Ă) ⊂ D(A) is also fulfilled. However, by proposition 5.1, the operators Ă, A are
distinguished on the infinite-dimensional subspace from D(Ă) ∩ D(A). Here we encounter
one of the deep phenomena of the singular perturbation theory connected with the property of
a positive quadratic form to have a lot of closed extensions associated with various self-adjoint
operators. Indeed, in our case the operator Ă2 ≡ L is associated with the closed quadratic
form ν(ϕ,ψ) := (Aϕ,Aψ)0, ϕ, ψ ∈ M+. That is ν(ϕ,ψ) = (Lϕ,ψ)0 = (Ăϕ, Ăψ)0, where
Ă = √

L. Besides the form ν possesses another closed extensions. One of them is the form
(Aϕ,Aψ)0, ϕ, ψ ∈ H+ which is associated with A2. We note that in general it is not easy to
find an explicit action of the operator L and especially

√
L. We partly solved this problem in

theorem 4.7 which contains the description of the operator L in the terms of A2.
We emphasize that L is the Friedrichs extension of A2|M̃+. Therefore, its resolvent

admits the evident representation by Krein’s formula. This means that in applications our
constructions belong to the class of solvable models.

Proposition 5.1. For the above-defined operator Ă, there exists an infinite sequence of
orthonormal in M+ vectors {η+,i}∞i+1 such that

Ăη+,i �= Aη+,i , i = 1, 2, . . .

Proof. We recall that D(A) = H+ = M+ ⊕ N+,N+ = Ker T, D(Ă) = M+ � H0, and that
the mappings A : M+ → M0 := AM+, Ă : M+ → H0 are unitary.

Without loss of generality we consider the simplest case, that is, we assume that dim

N+ = 1. Take a unit vector η+ ∈ N+ and define η+,1 := Ă
−1

η0, where η0 := Aη+ ∈ N0 :=
AN+. Clearly, η+,1 ∈ M+ and η+,1 ⊥ η+. Therefore

η0,1 := Aη+,1 ⊥ η0 and Aη+ = Ăη+,1.

Thus, Aη+,1 �= Ăη+,1.

Further, we introduce the subspace M+,1 := M+ � {η+,1}, where {η+,1} denotes the
one-dimensional subspace spanned by the unit vector η+,1. Since the map A : M+ → M0

is unitary we may put M0,1 := AM+ � η0,1, where η0,1 = Aη+,1 ∈ M+. Now we define

η+,2 := Ă
−1

η0,1 ∈ M+,1. Clearly, η0,1 ⊥ η0 implies η+,2 ⊥ η+,1, where we used that the

mapping Ă
−1

: M+ → M+,1 is unitary. Therefore we have,

M0,1 � Aη+,2 =: η0,2 ⊥ Ăη+,2 = η0,1, i.e., Aη+,2 �= Ăη+,2.

In the next step we define M+,2 := M1,+ � {η+,2}. Since the mapping A : M+,1 → M0,1

is unitary, we have M0,2 := AM1,+ � {η0,2}, where η0,2 := Aη+,2 ∈ M+,1. We define

η+,3 := Ă
−1

η0,2 ∈ M+,2, η+,3 ⊥ η0,2, where we used again that Ă
−1

is unitary. Therefore

M0,2 � Aη+,3 ⊥ Ăη0,3 = η0,2, i.e., Aη+,3 �= Ăη+,3.

And so on to any n:

Aη+,n �= Ăη+,n, η+,n := Ă
−1

η0,n−1, η0,n−1 := Aη+,n−1, n > 1. �

We illustrate the above constructions by simple examples.
Let a perturbant T be a rank-1 singular H−2 -class operator acting as follows:

T ϕ = 〈ϕ, ω〉+,−ω, ϕ ∈ H+ = D(A),
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where an element ω ∈ H−\H−1 is fixed, here H− ≡ H−2(A) (see section 2). So, the set
Ker T ≡ M+ = {ϕ ∈ H+|〈ϕ, ω〉+,− = 0} is dense in H0. Clearly M+ = H+ � {cη+}, where
η+ := I+,−ω = A−1(Acl)−1ω. Obviously also that

M̃+ = {ϕ ∈ D(A2) ≡ H++|〈ϕ, ω〉++,−− = 0} = M+ ∩ H++

is dense in M+ and H0 too. Now we easily find that the operator L corresponding to
the formal sum A2 +̃ (·, ω)ω realizes the Friedrichs extension of the symmetric restriction
L̇ := L|M̃+. This operator has the following explicit description (see proposition 4.6 and cf
proposition 3.2 in [4] and the closed result in [21]):

D(L) = PM+D(A2), LPM+ϕ = A2ϕ, ϕ ∈ D(A2).

Because the set M̃+ ⊂ D(L) is dense in M+ and (Lϕ,ψ)0 = (L1/2ϕ,L1/2ψ)0 =
(Aϕ,Aψ)0 = (ϕ, ψ)+, ϕ, ψ ∈ M̃+ we conclude that dom L1/2 ≡ dom Ă = M+. However,
it is a non-trivial problem to describe in a general case the action of the operator Ă = L1/2.
We are able to solve this problem only in the concrete examples.

Let H0 = L2(R, dx), A = − d2

d2x
, and ω = δ0(x) be the Dirac delta function supported

in the origin of coordinates. So, H+ = W 2
2 (R, dx), H++ = W 4

2 (R, dx), where Wd
2 (R, dx)

stands for the usual Sobolev space of order d. Now M+ = {
ϕ ∈ W 2

2 (R, dx)|ϕ(0) = 0
}

and
M̃+ = {

ϕ ∈ W 4
2 (R, dx)|ϕ(0) = 0

}
.

Then the operator L = d4

d4x
+̃ δ0 which is the Friedrichs extension of L̇ := L|{ϕ ∈

W 4
2 (R, dx)|ϕ(0) = 0

}
admits the following description:

Lϕ = d4

d4x
ϕ, D(L) = {

ϕ ∈ W 4
2 (R\{0}, dx) ∩ W 3

2 (R, dx)|ϕ(0) = 0)
}
.

Moreover, coming to the spectral representation we find the explicit formula for the action of
Ă ≡ L1/2:

Ăϕ(x) = −ϕ′′(x) + 2/π

∫ ∞

−∞

x2

(x2 + y2)(|x| + |y|)ϕ
′′(y) dy,

where the domain

D(Ă) = {
ϕ ∈ W 2

2 (R, dx)|ϕ(0) = 0
}
.

We observe that Ăϕ = −ϕ′′ if ϕ is an odd function. And Ăϕ �= −ϕ′′ on the infinite-dimensional
subspace of all even functions (cf with proposition 5.1).

Finally we note that operators of type (−�)n, n > 1 have an evident physical sense in
resonator theory. Moreover, the model (−�)2 + δ0 admits the explicit solution and therefore
belongs to the class of solvable models. In particular, the corresponding perturbed operator
has the representation via Krein’s resolvent formula. However, the highly non-trivial problem
is to find an explicit view for the square root

√
(−�)2 + δ0. We solve this problem in the above

example.
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